Return To Flight

NASA

Summary of Return To Flight Efforts

Ballistics Impact Testing

- Assess impact damage threat from debris on orbiter surfaces
- Extensive spectrum of test programs on Return to Flight critical path

Main Landing Gear Door Environmental Seals

- Identified minimum amount of seal compression required to meet seal leakage goals
- Determined compression levels at which seal loads could become too high

Refractory Metal Overwrap Concept

- Potential method for on-orbit repair of orbiter leading-edge damage
- Flexible, robust, and includable in a "repair kit" (see photo at right)

Application of a refractory metal sheet over a mockup of Space Shuttle panel 9.

Actuator Gear Tests

- Determine nature of wear and fretting damage and effect on gear tooth strength
- Life and reliability of the actuators for rudder speed brake being evaluated

Reinforced Carbon-Carbon (RCC) **Degradation**

- Critical material for wing leading edge and nose cap
- Study of RCC material to gain deeper understanding of how it degrades with each mission cycle and impact on safe mission limits

GRC test gears showing wear and fretting damage.

Glenn Adhesive Refractory for Bonding and Exterior Repair

- Potential multi-use capabilities for in-space repair of cracks in RCC leading-edge material
- Had been considered for the Return to Flight program and continues as part of ongoing research development

Protuberance Air Load (PAL) Ramps Air Flow

- Portions of PAL foam had come off in previous flights
- Wind tunnel tests resulted in better understanding of flow fields over external tank and the loads on the cable tray

High-speed digital images taken from the fullscale wing leading-edge tests.